In the rural and semi-rural environment many sources of contamination may impact surface water quality. In addition to nutrients from agricultural activities, contaminants occurring at low concentration so-called trace contaminants are a growing issue for water quality. To address this issue and investigate mitigation measures, the Berlin Centre of Competence for Water (KompetenzZentrum Wasser Berlin) developed a collaborative research project called Aquisafe, in association with the Indiana University – Perdue University Indianapolis (IUPUI), the German Federal Agency for the Environment “Umweltbundesamt” (UBA) and Veolia Water. The project aims at investigating mitigation zones such as constructed wetlands or riparian zones to improve the quality of surface water with respect to diffuse pollution. Before using models and conducting field experiments, the first part of the project is an extensive analysis of the nature, occurrence, and risks of source water contamination in rural and semi-rural areas. This is the subject of the poster. The objectives of this first part of the project are (i) to provide background information on surface water and its use in Europe, particularly regarding drinking water supply, (ii) to investigate the characteristics of the families of pollutants that are potentially of interest, and finally (iii) to select the most relevant trace contaminants to be investigated in future field experiments. To reach these objectives, an extensive literature review was carried out, using different criteria to select the relevant families of pollutants and then the individual substances. The screening process is currently in progress and includes a collection of substance characteristics that will be used for subsequent selection, such as toxicity or persistence in the environment. Key figures and information were collected concerning the nature, use and vulnerability of surface water in Europe that provides 70% of total water abstraction (drinking water, industry and agriculture) in Europe. The main pollutant families of interest for the screening process were the following: pesticides used in agriculture (e.g. glyphosate or isoproturon), pollutants coming from the spreading of animal waste on land (e.g. veterinary pharmaceuticals or hormones), pollutants coming from the spreading of sludge from wastewater treatment plants (e.g. heavy metals or hormones), pollutants from natural areas (e.g. flame retardants in forests), and pollutants from transportation networks (e.g. heavy metals from vehicles). Consequently in a rural or semi-rural area, the land use in the watershed plays a key role in the selection and assessment of priority pollutants coming from diffuse sources and entering surface waters. The work is still in progress concerning the review of pollutant families, and will lead to the final screening at substance level, providing a list of key contaminants for the other work packages within the Aquisafe project. Eventually, corresponding data for the same issues in the United States will be added and provide a comparison between the two continents.
Major reservoirs are a key element for public water supply in many countries. In Europe over 800 major reservoirs serve primarily this purpose. Eutrophication affects significant numbers of lakes and reservoirs, and is the well-known issue currently impacting drinking water supply reservoirs. In most cases, phosphorus is the principal cause of eutrophication, and therefore has been studied intensively. The presence of micro pollutants (e.g. pesticides, pharmaceutically active compounds - PhaCs) is not systematically monitored but some substances are very mobile and tend to resist degradation. Such contaminants have been detected in numerous surface water bodies (lakes, reservoirs and rivers). As agriculture is intensifying and land use is changing in many areas, the impact of diffuse pollution on water quality is expected to be more pervasive in the future. The project Aquisafe proposes to investigate the topic in a multi-step approach which will include: i) an analysis of the nature, occurrence and risk of surface water contamination, ii) a modelling approach to quantify the contaminants origin, load and repartition to assess the effects of adapted controlled measures, and iii) the development, adaptation or optimisation of the design and operation of mitigation zones (riparian corridors and small scale wetlands) to reduce downstream loads of pollutants. Thus, Aquisafe is a first step to establish the state-of-the-knowledge on current existing solutions, identify emerging issues and assess the feasibility of using models for the evaluation of mitigation zones for contaminants removal. Within the Aquisafe project it will expected: i) a recommendation on potential key substances to be targeted, also for further investigations, ii) an identification of drinking water source vulnerability to emerging contaminants using a coupled modelling approaches, and iii) an analysis of existing mitigation methods and scientific background for the construction of riparian corridors and/or constructed wetlands in order to mitigate trace contaminants entering the surface water.
Im Oktober 2006 wurde das NASRI (Natural and Artificial Systems for Recharge and Infiltration) Projekt, ein Vorhaben der Kompetenzzentrum Wasser Berlin gGmbH, endgültig mit einer öffentlichen Präsentation der wichtigsten Ergebnisse abgeschlossen. In fast vier Jahren interdisziplinäre Forschungstätigkeit untersuchten mehr als 40 Wissenschaftler aus mehreren Berliner Universitäten und dem Umweltbundesland, gemeinsam mit den Berliner Wasserbetrieben die Prozesse während der Uferfiltration und künstlichen Grundwasseranreicherung. Es war ein Hauptziel des Projektes ein umfassendes Prozessverständnis zu entwickeln, um so die nachhaltige Nutzung der Uferfiltration und künstlichen Grundwasseranreicherung unter Berücksichtigung zukünftiger Anforderungen und Bedrohungen langfristig sicherzustellen.
In Berlin – wie auch in anderen Regionen Deutschlands – wird ein Großteil des Trinkwassers durch Uferfiltration gewonnen. Durch eine Untergrundpassage mit einer Dauer von meist mehreren Wochen erhält es eine Aufreinigung, die den Aufwand der konventionellen Trinkwasseraufbereitung verringert und eine zusätzliche Barriere gegenüber Schadstoffen darstellt (Kühn 2001). Das Ziel eines interdisziplinären Forschungsvorhabens mit dem Titel NASRI (Natural and Artificial Systems for Recharge and Infiltration) war, die Reinigungsprozesse für verschiedenste Substanzen zu ermitteln und Empfehlungen für das zukünftige Wassermanagement in Berlin abzuleiten (Fritz 2003). Aufgabe der Arbeitsgruppe des Umweltbundesamtes war dabei zu klären, wie wirksam Microcystinen (MCYST) als wichtigste Gruppe der Cyanobakterientoxine durch die Bodenpassage eliminiert werden. Im Folgenden werden einige Schlüsselergebnisse berichtet. Für eine ausführliche Ergebnisdarstellung siehe Grützmacher et al. (2006). MCYST sind in der Regel überwiegend (> 90 %) zellgebunden, so dass die physikalische Filtration der Zellen an der Sedimentoberfläche als Eliminationsprozess im Vordergrund steht (Grützmacher et al. 2003). Das extrazelluläre MCYST wird dagegen überwiegend biologisch abgebaut (Lahti et al. 1998, Grützmacher et al. 2005a). Um unter naturnahen Bedingungen Extremfälle für den biologischen Abbau zu simulieren, wurden i) Freilandversuche unter variierenden Redoxbedingungen und ii) Laborsäulenversuche bei unterschiedlichen Temperaturen durchgeführt. Ferner wurde die Freisetzung von MCYST aus sedimentierten Zellen untersucht.
Das Berliner Trinkwasser wird überwiegend durch induzierte Uferfiltration entlang der Oberflächengewässer gewonnen. Durch die geringen Durchlässigkeiten der Seesedimente findet eine Infiltration nur an den besser durchlässigen Uferzonen statt, und es kommt zu einer Unterströmung der Seen. Durch die Kombination verschiedener Umwelttracer konnte eine starke vertikale Altersdifferenzierung des Uferfiltrats nachgewiesen werden. Die Fließzeiten betragen in den flacheren Grundwasserleiterbereichen einige Monate, in den tieferen Bereichen sogar mehrere Jahre. Das den Abbau redox-sensitiver Substanzen beeinflussende, vorherrschende Redoxmilieu weist ebenfalls eine starke vertikale Differenzierung auf, die Infiltration erfolgt überwiegend anoxisch, und das Uferfiltrat wird mit der Tiefe reduzierender. Da das Oberflächenwasser einen variablen Anteil geklärten Abwassers enthält, konnten einige abwasserbürtige Substanzen (z.B. pharmazeutische Rückstände) in Oberflächenwasser- und im Uferfiltrat nachgewiesen werden. Obwohl der überwiegende Teil pharmazeutischer Rückstände effizient während der Untergrundpassage entfernt wird, erwiesen sich einige Substanzen als äußerst persistent (AMDOPH, Primidon und Carbamazepin).
Berlin relies on induced bank filtration from a broad-scale, lake-type surface water system. because the hydraulic conductivity of the lake sediments is low, infiltration only occurs close to the more permeable shore zones. Using multiple environmental tracer methods, a strong vertical age stratification of the bank filtrate could be shown. travel times are generally long and vary throughout the upper aquifers from a few months near the ground surface to several decades in greater depth. infiltration is mostly anoxic and redox zones were found to be vertically stratified too, becoming more reducing with depth. because berlin’s watercourses contain a proportion of treated municipal sewage a number of wastewater residues, e. g. pharmaceutical residues, were detected in surface water and groundwater. While the majority of the pharmaceutical residues studied were efficiently removed during underground passage, some substances (aMDOPh, primidone and carbamazepine) were found to be very persistent.
Cyanobacterial toxins are toxic substances produced by cyanobacteria or blue-green-algae. The can occur in surface waters wordwide and have to be removed sufficiently when using infested surface waters as drinking water source. Bank filtration has been used since 150 years for drinking water (pre-)treatment and utilizes natural elimination processes like sorption and degardation in the sub-surface. During several research projects the German Federal Environmental Agency (Umweltbundesamt, UBA) carried out field investigations and experiments in different scales in order to assess under which conditions secure elimination of microcystins (the most common group of cyanobacterial toxins) takes place. Filtration of cells on the sediment surface is the most prominent process for eliminating the primarily cell-bound toxins. Middle to coarsly grained sands eliminated more than 99.9 % of intracellular toxins within the first 10 centimeters. Elimination of extracellular microcystin during underground passage is mainly due to biodegradation. Reversible adsorption processes do not reduce the total load but lead to longer contact times for extended biodegradation. Laboratory experiments showed that high clay and silt content is crucial for maximum adsorption. However, redox conditions play an important role for degradation rates: under aerobic conditions half lives of less than one day occured frequently whereas anoxic conditions resulted in lag phases of one day and more as well as in half lives of up to 25 days. Field experiments could show that temperature is crucial for degradation velocity under natural conditions.
Cyanobacterial toxins are substances produced by cyanobacteria that occur in surface waters world wide. The most common group of cyanobacterial toxins is the group of structurally similar microcystins (MCYST). Sand passage as used in slow sand filtration, artificial recharge and bank filtration has shown to be effective in eliminating microcystins in many cases. For secure drinking water production from surface waters infested by microcystins removal has to be ensured in a wide variety of cases met in the field. It was therefore the aim of experiments in technical and semitechnical scale on the UBA’s experimental field in Berlin to test some worst case scenarios for the reliability of microcystin elimination during sand passage. Experiments were conducted with virgin sand (no previous contact to MCYST) and high filtration rates as well as under anaerobic conditions. The results show that the greatest problem for MCYST elimination can be found under anaerobic conditions as degradation is not complete and may lead to harmful residual concentrations.
Microcystins (MCYST) are a group of toxic substances produced by cyanobacteria (‘blue-green-algae’). In case of cyanobacterial blooms microcystin concentrations in surface waters may reach values far above the value proposed as provisional guideline for drinking water by the WHO of 1 µg/L for MCYST-LR. For drinking water production via underground passage it is therefore necessary to ensure removal to a large extent. For this reason experiments with extracellular microcystins were conducted in the laboratory as well as in a natural setting on the UBA’s (German Federal Environmental Agency) experimental field for simulation of underground passage. Laboratory batch experiments showed that adsorption of microcystins can be neglected in sandy material (kd < 1 cm³/g). Batch and column experiments identified biodegradation as the predominant elimination process in these sediments. The degradation rates derived from laboratory column experiments as well as semi-technical scale enclosure experiments varied between 0.2 d–1 and 18 d–1. In the worst case this means a half life of 2.8 days, so that under aerobic conditions contact times of several days should be sufficient to eliminate MCYST to an extent safe for use as drinking water.