In the densely populated semi-arid territory around Delhi, the water demand is rising continuously, while the surface- and groundwater resources are threatened by contamination and overexploitation. This is a typical scenario in many newly industrialising and developing countries, where new approaches for a responsible resources management have to be found. Bank filtration holds a great potential, thus being a low tech method and benefiting from the storage and contaminant attenuation capacity of the natural soil/rock. For this study, three field sites have been constructed to investigate bank filtration in different environments in and around the megacity with a main focus on inorganic contaminants. Hydraulic heads, temperature gradients and hydrochemistry of surface water and groundwater were analysed in three different seasons. Depending on sitespecific conditions, distinct hydrogeological conditions were observed and both positive and negative effects on water quality were identified. Most concerning issues are the impact of anthropogenic ammonia, the mixing with ambient saline groundwater and the mobilisation of arsenic during the reductive dissolution of manganese- and iron(hydr)oxides. Positive aspects are the dilution of contaminants during the mixing of waters from different sources, the sorption of arsenic, denitrification, and the precipitation of fluoride under favourable conditions.
The overall project WellMa, which stands for well management, aims at the optimization of the operation and maintenance of drinking water abstraction wells. For this purpose, in addition to a statistical analyses of well data (report D 1.2) and first field investigations to compare various diagnosis methods (report D 1.3), a review of literature during the preparatory phase WellMa1 should answer the following questions: (1) Which processes affecting the well performance and conditions can occur? (2) Which correlation exists between well ageing and well characteristics? (3) How can such well ageing be recognized at an early stage? (4) What is the state of the practice to restore a good performance and condition? (5) What can be done during well design and construction to prevent well ageing? (6) How can well operation be adjusted to slow-down well ageing processes? Based on textbooks, standards and professional articles published in large number since the middle of the nineties, the state of the art was gathered and compared to current practice at BWB and Veolia to identify possibilities for improvement and specify the need for further investigations to be proposed for WellMa2. 1) Three well ageing types involving different processes could be identified. These are chemical, biological and physical clogging. They are closely linked to the characteristics of the exploited aquifer, such as the physical properties of the formation or the chemical composition of the groundwater. 2) The evaluation of these site-specific aquifer characteristics, the impacts from well design and the observed effects on the well performance and condition and their development with time of operation should be used to specify the individual ageing potential for each well site. 3) The early recognition of well ageing implies the need to monitor wells (1) regularly and (2) with comparable methods. As suitable indicators, the development of water levels and discharge rates to calculate the specific drawdown and specific capacity, the pump surveillance and the visible condition of the well interior could be identified. 4) Both, the assessment of the ageing potential and the monitoring of a reference value describing the state of the well lead to the specification of maintenance requirements. Generally, three strategies could be identified, ranging from sheer operation, over reactive maintenance to regular condition assessment and preventive treatment. Concerning the choice of maintenance method, key criteria must always be the well design, its state of construction, the well ageing type and location. Up to now, patterns linking well characteristics and the success of maintenance could not be identified. Thus, maintenance relies on practical experience and the willingness to discuss limitations and disadvantages of methods as open as the advantages on side of the rehabilitation companies. 5) For well design and construction, the technical standards were summarized, describing the necessary steps for proper dimensioning, drilling, choice of materials and final well development. Not only the avoidance of nonconformities and the careful evaluation of the advantages, but also the restrictions of different well design alternatives, e.g. for the accessibility of rehabilitation, assure an optimal well ageing prevention and well operation. 6) Furthermore, well operation could be identified as a key element and critical factor codetermining the lifetime, but at the same time the economic efficiency of a well. It is always a compromise between demand, technical possibilities and economic considerations, for which reason general standards or technical guidance are not available so far. They need to be developed individually considering present well ageing processes and the quantification of impacts. Comparing the state of the art with current practice at BWB and Veolia, room for improvement could primarily be identified for monitoring and subsequent data processing for both, operational parameters (to assess well performance and condition), and maintenance (to evaluate the success of applied treatments). Based on the recommendations derived on this state of the art review, within WellMa2 the effects of measures for preventing and treating well ageing shall be quantified so that the benefits can be assessed for future optimized well management.
The assessment of methods for the diagnosis and distinction of well ageing types and processes with the aim to recommend methods and tools for further fieldwork was part of work package 1 of the preparatory phase WellMa1. Therefore, field tests were carried out at selected well sites with a variety of methods covering standard monitoring methods to assess the constructive state of a well (TV inspections, borehole geophysical methods) and its performance (pump tests) as well as methods aiming at a better process understanding such as the hydrochemical and microbiological analysis of the raw water and clogging deposits. Altogether ten methods were applied at 21 different wells of the Berliner Wasserbetriebe (BWB) covering (i) exposure of object slides during operation and rest periods for microbiological investigations, (ii) BART with test kits for iron-related bacteria (IRB) and slime-forming bacteria (SLYM), (iii) water sampling for the investigation of pristine groundwater organisms, (iv) online measurements of chemical parameters O2, Eh, pH and T and water sampling for chemical analyses (main cations and anions), (v) TV inspections, (vi) three-step pumping tests, (vii) borehole geophysics with Gamma-Gamma-Density scan (GG.D), NeutronNeutron log (NN), Flowmeter (Flow) and Packer-Flowmeter measurement and (ix) Particle countings. The assessment and comparison should originally be completed by a horizontally directed core sampling from different depths from the screen sections of three of the chosen wells. Due to technical difficulties, this was not achieved during this phase of the project. The investigations led to a development and refinement of the methods and approaches. Because of their limited accessibility to the different parts of a well, a combination of methods is always necessary. Especially for the indirect methods like borehole geophysics, an initial assessment of the well condition directly subsequent to construction is essential to provide a basis for the assessment of the well performance development. Generally, the applied standard monitoring methods and diagnosis tools provided the expected identification of a performance deterioration and evidence for the presence of starting materials for clogging processes such as iron, oxygen, iron-related bacteria and particles. Room for improvement could be identified with regard to the reliability, information value and comparability of the tested methods, e.g. by a stepwise combination and extension of the methods to determine the interacting processes from the composition of the deposits. Further investigations should aim at method validation, especially for well monitoring during routine operation (e.g. use of delta h, development of standards for Qs-measurements and TV inspections), and further method development for the ongoing project with scientific investigations to obtain deeper process understanding, e.g. investigating shares of deposits resulting from the different processes (chemical, biological, physical) and relations between the rate of clogging or the location of deposits to well characteristics and site conditions to separate the different well ageing processes. This will then lead to the identification of key parameters that may be influenced to slow down well ageing and keep the well performance and water quality at an optimum.
The behaviour of residues of antibiotic drugs during bank filtration was studied at a field site in Berlin, Germany, where bank-filtered water is used for the production of drinking water. The neighbouring surface water used for bank filtration is under the influence of treated municipal wastewater. Seven out of 19 investigated antimicrobial residues were found in the surface water with median concentrations between 7 and 151 ng L¡1. Out of the seven analytes detected in the surface water only three (anhydroerythromycin, clindamycin and sulfamethoxazole) were found with median concentrations above their limits of quantitation in bank filtrate with a travel time of one month or less. With the exception of sulfamethoxazole, none of the 19 analytes were present in bank filtrate with a residence time larger than one month or in the water-supply well itself. Sulfamethoxazole found with a median concentration of 151 ng L¡1 in the surface water was the most persistent of all antimicrobial residues. Nevertheless, it was also removed by more than 98% and only found with a median concentration of 2 ng L¡1 in the water-supply well. The degradation of clindamycin and sulfamethoxazole appear to be redox-dependent. Clindamycin was eliminated more efficiently under oxic infiltration conditions while sulfamethoxazole was eliminated more rapidly under anoxic infiltration conditions. A slight preference for an improved degradation under oxic (clarithromycin and roxithromycin) or anoxic (anhydroerythromycin) conditions was also observed for the macrolide antibiotics. Nevertheless, all macrolides were readily removable by bank filtration both under oxic and anoxic conditions.
The behaviour of residues of phenazone-type pharmaceuticals during bank filtration was investigated at a field site in Berlin, Germany, where bank-filtered water is used for drinking water production. The concentrations of the pharmaceutical residues in the shallow, young bank filtrate (travel times < one month) were correlated to the prevailing hydrochemical conditions at the field site. In addition, their behaviour during passage through an undisturbed sediment core from the lake base at the site (clogging layer) was evaluated in the laboratory. Phenazone, 4-acetylaminoantipyrine (AAA), 4-formylaminoantipyrin (FAA) and 1,5-dimethyl-1,2-dehydro-3-pyrazolone (DP) were eliminated more efficiently under oxic conditions, while 1-acetyl-1-methyl-2-dimethyloxamoyl-2-phenylhydrazide (AMDOPH) was not eliminated at all. The redox conditions and the elimination of the respective pharmaceutical residues displayed strong seasonal variations. Oxic conditions were only encountered close to the shore in winter, when temperatures were low. The column study showed that the elimination is restricted to the uppermost decimetres of the lake base, where oxygen is present. While phenazone elimination is almost complete during aerobic rapid sand filtration in the waterworks, the compounds were found to be more persistent under anoxic field conditions.