To sustain good harvests, each year more than one million tonnes of mineral phosphorus have to be imported to the European Union (van Dijk et al., unpublished data), while the potential to recover and recycle this essential resource remains untapped or is just inefficiently used as in the case of sewage sludge, manure and food waste. In recent years various technical solutions have been developed to recover phosphorus providing mineral compounds suitable as raw material for fertiliser production or even as ready-to-use fertiliser. Regarding the implementation of these technologies, operational benefits for plant operators like the water utilities in the case of P recovery from wastewater and/or sewage sludge are the strongest argument for their market penetration. Without the provision of direct operational benefits, implementation needs to be motivated or even enforced by suitable and reliable policies. In order to realise a circular economy, it is important not just to focus on the recovery itself. The recovered materials need to match the requirements and needs of their intended users. Therefore, full value-chain solutions have to be promoted instead of isolated technology-focused approaches. Following our principles of sustainability and resource efficiency, the assessment of innovations must also include their environmental impact. This review provides an overview of recently developed and promising technologies for phosphorus recovery from wastewater and discusses aspects regarding their wide-spread application, along with their limitations. It will focus on recovery and recycling from sewage sludge. Not only the technologies themselves, also the recovered materials and their valorisation options are addressed. Results of the EU FP7 funded project P-REX entitled 'Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency' and other recent initiatives will be included. Since innovation always needs an enabling environment for market penetration, barriers set by the existing legal framework and measures to resolve them will be reviewed. Finally, Goethe's words are true more than ever: 'Knowing is not enough, we must apply! Willing is not enough, we must do!'
Die vorliegende wissenschaftliche Studie untersucht Potenziale und Grenzen der Hydrothermalen Karbonisierung (HTC) von entwässertem Klärschlamm zur Verbesserung der Energie- und Klimabilanz der Klärschlammentsorgung in Berlin. Für vier Berliner Klärwerke wurden Laborversuche zur HTC mit entwässertem Klärschlamm durchgeführt, um die Produkte HTC-Filtrat und hochentwässerter Klärschlamm zu charakterisieren. Mit diesen Daten und den Prozessangaben des HTC-Anbieters Terranova wurden Energieund Treibhausgasbilanzen für vier Klärwerke erstellt, die neben dem Referenzzustand 2013 für verschiedene Entsorgungswege auch die Implementierung eines HTC-Prozesses vorsehen. Abschließend wurde das HTC-Verfahren in einem technischen Pilotversuch mit zwei Berliner Klärschlämmen getestet und ebenfalls bilanziert. Die Laborversuche bestätigten die hohe Belastung des HTC-Filtrats mit CSB und N. Die organische Fracht im HTC-Filtrat zeigt im Biomethantest gute anaerobe Abbaubarkeit und einen entsprechenden Faulgasertrag. Der verbleibende CSB ist noch weiter aerob abbaubar (Zahn-Wellens-Test), so dass letztlich zwischen 1-14% der CSB-Fracht im Filtrat (7,4-14,5 g/L) als refraktär angesehen werden. Eine merkliche Rücklösung von Phoshor und Schwermetallen lässt sich erst bei stark sauren Bedingungen während der HTC (pH < 3) feststellen. Die Pilotversuche mit Klärschlamm aus Waßmannsdorf und Münchehofe in der Anlage des Anbieters Terranova konnten aufgrund von Problemen bei der Klärschlammaufgabe nicht kontinuierlich durchgeführt werden. Zudem wurde bei der abschließenden Entwässerung nicht der hohe prognostizierte TR-Gehalt im Klärschlamm erreicht (> 65% TR). Damit bleiben erhebliche Zweifel an der Betriebsstabilität und den prognostizierten Entwässerungsergebnissen bestehen. Die Energie- und Klimabilanz auf Basis der Labordaten und Herstellerangaben zeigt, dass die Einführung eines HTC-Prozesses für alle betrachteten Szenarien deutliche Vorteile bieten kann. Dabei spielt vor allem der erhöhte Faulgasertrag aus dem Prozesswasser (+16-19%) und der hohe Heizwert des hochentwässerten Klärschlamms eine Rolle. Die zusätzlichen Aufwendungen für den Prozess (Erdgas, Strom, Säure) und die höhere Rückbelastung des Klärwerks werden durch die Gutschriften ausgeglichen. Die Abwärme für den HTC-Prozess ist auf allen Klärwerken mit Faulung zu über 90% vorhanden, im Klärwerk Ruhleben sollte dazu eine separate Faulstufe für das HTC-Filtrat vorgesehen werden. Die Bilanzierung auf Basis der Daten aus den Pilotversuchen zeigt jedoch, dass die Vorteile der HTC deutlich geringer ausfallen, wenn Faulgasertrag im Filtrat und Entwässerbarkeit nicht erreicht werden. Der refraktäre CSB aus dem HTC-Filtrat kann im Ablauf der Klärwerke maximal zu einer Erhöhung des CSB-Ablaufwerts von 7-12 mg/L führen, was bei einzelnen Klärwerken eine Überschreitung der Überwachungswerte zur Folge haben kann. Dieser Aspekt ist bei der weiteren Betrachtung des HTC-Verfahrens unbedingt zu berücksichtigen. Eine Kombination von Phosphorrückgewinnung und HTC lässt sich über eine Rückgewinnung aus der Asche der Monoverbrennung oder eine vorgeschaltete P-Extraktion erreichen. Die abgeschätzten Betriebskosten der HTC-Anlage können ggf. durch Einsparungen bei der Schlammentsorgung ausgeglichen werden, wobei die Investitionskosten für eine HTC-Anlage noch unbekannt sind.
Der vorliegende Abschlussbericht fasst die Ergebnisse des Forschungsvorhabens IST4R (Integration der Spurenstoffentfernung in Technologieansätze der 4. Reinigungsstufe) zusammen, in dem verschiedene Verfahrenskombination von Aktivkohle und Ozonung zur Entfernung von anthropogenen Spurenstoffen als weitergehende Abwasserreinigung untersucht wurden. Dabei stand insbesondere die Integration dieser Verfahren in die Flockungsfiltration zur weitestgehenden Entfernung von Phosphor und abfiltrierbaren Stoffen im Fokus, die eine Planungsvariante zum zukünftigen Ausbau der Berliner Klärwerke darstellt. Ein wesentliches Ziel war die Bewertung der Verfahrensalternativen (1) Direktdosierung von Pulveraktivkohle, (2) Festbettadsorption an granulierte Aktivkohle und (3) Ozonung zur Spurenstoffentfernung, um zukünftige Anforderungen an Oberflächengewässer zu erfüllen. Die mittels Pilotversuchen gewonnenen Ergebnisse verdeutlichen, dass sowohl Ozonung als auch Aktivkohle sinnvoll mit der Flockungsfiltration kombiniert werden können. Alle untersuchten Verfahrensvarianten sind geeignet, den Spurenstoffeintrag kommunaler Kläranlagen signifikant zu verringern und gleichzeitig die Zielwerte für die suspendierten Stoffe (TSS < 1 mg/L) und Gesamtphosphor (TP < 0,1 mg/L) sicher einzuhalten. Es erfolgt eine zusätzliche Entfernung von CSB und DOC. Die Entfernung der einzelnen Spurenstoffe ist stoffspezifisch. Sie ist außerdem abhängig von der Konzentration des im Wasser vorliegenden gelösten organischen Kohlenstoffs (DOC) und der Dosis von Aktivkohle bzw. Ozon, aber unabhängig von der Ausgangskonzentration der Spurenstoffe. Für ausgewählte Indikatorsubstanzen wurden Dosis-Wirkungsbeziehungen für die Adsorption an Aktivkohle und die Reaktion mit Ozon ermittelt und an den Pilotanlagen überprüft. Der spezifische Absorptionskoeffizient bei 254 nm (SAK254) ist eine geeignete Größe zur Steuerung und Überwachung der Spurenstoffentfernung und sowohl für die Ozonung als auch die Adsorption an Aktivkohle aussagekräftig. Eine Regelung der Ozonung mittels SAK254 wurde im Pilotmaßstab getestet. Die Pilotuntersuchungen wurden darüber hinaus durch ein toxikologisches Monitoring begleitet, bei dem unterschiedliche, etablierte Untersuchungsmethoden eingesetzt, aber keine Hinweise auf humantoxikologische bzw. ökotoxikologische Risiken aufgezeigt wurden, auch nicht durch Oxidationsprodukte der Ozonung. Um eine vollständige ökotoxikologische Bewertung zu ermöglichen, müssen die Methoden weiter entwickelt werden. Neben den verfahrenstechnischen Untersuchungen wurden für die Verfahrensvarianten auch eine Kostenschätzung und Ökobilanz erstellt. Sowohl die Gesamtkosten als auch die Umweltwirkungen einer weitergehenden Phosphorentfernung mit Flockungsfiltern erhöhen sich deutlich, wenn mittels Ozon oder Aktivkohle zusätzlich auch Spurenstoffe entfernt werden sollen.
This report provides the reader with an overview of assessment methodologies used within DEMOWARE and the specific features when using QMRA, QCRA, LCA, and WFP approach for the assessment of water reuse systems. For the actual application of LCA and water footprint databases and assessment software is needed. Therefore, three complementing goals shall be achieved: (i) to provide practitioners with the principles, methods and limitations of QMRA, QCRA, LCA and WFP (ii) to provide LCA, WFP, RA practitioners with additional information when using the respective method for the assessment of water reuse systems. For QMRA a summary of guidelines and default values is collected from different guidelines documents (WHO, Australia, US-EPA), which allow a first simplified and thus user friendly risk estimate.
Within Work Area 5 of the DEMEAU project, selected innovative technologies and tools for emerging contaminants removal and monitoring are assessed in their environmental and economic benefits and impacts by using life-cycle based tools such as environmental Life Cycle Assessment (LCA) and economic Life Cycle Costing (LCC). Six case studies were assessed to quantify their environmental and economic profiles and formulate unique selling propositions to promote market uptake and implementation. These case studies include managed aquifer recharge for groundwater replenishment or for drinking water production in combination with advanced oxidation process, hybrid ceramic membrane filtration with powdered activated carbon for tertiary wastewater treatment, automatic neural net control systems to optimize membrane operation, ozonation of wastewater treatment plant effluent, and bioassays as screening tool for water quality monitoring. This report summarizes the study layout, input data, and results of LCA and LCC for all case studies and indicates unique selling propositions based on the outcomes of the assessment.
The recovery of phosphorus (P) from sewage sludge, sludge liquor, or ash from monoincineration can be realized with different processes which have been developed, tested or already realized in full-scale in recent years. However, these pathways and processes differ in their amount of P that can be recovered in relation to the total P content in sludge, in the quality of the recovered P product, and in their efforts in energy, chemicals, fuels, and infrastructure required for P recovery. This study analyses selected processes for P recovery from sludge, liquor, or ash in their potential environmental impacts, following the method of Life Cycle Assessment (LCA, ISO 14040/44). Based on available process data from technology providers and end users, these processes are implemented in a hypothetical reference system for sludge digestion, dewatering and disposal in mono-incineration, including potential side-effects on mainstream wastewater treatment with the return load from sludge dewatering. Recovered products (e.g. P or N fertilizer, electricity, district heating) are accounted as credits for substituting equivalent industrial products. Depending on the maturity of the investigated process, collected process data of process efficiency, product quality, and energy and material demand originates from full-scale plants, pilot trials, or prospective modeling (status in 2014). This data is validated with the technology providers, transferred to the reference system and evaluated with a set of environmental indicators for energy demand, global warming, acidification, abiotic resource depletion, eutrophication, and human and ecotoxicity. Results show that pathways and processes for P recovery differ heavily in their amount of recovered P, but also in energy and related environmental impacts (e.g. greenhouse gas emissions). As direct struvite precipitation in sludge or liquor relies on the dissolved amount of P in digested sludge, these processes are only applicable in wastewater treatment plants with biological P removal. Here, they can recover 4-18% of total P in sludge with a relatively low effort in energy and chemicals, reducing return load to the mainstream process and eventually improving sludge dewaterability in case of direct precipitation in sludge. Acidic leaching of P from digested sludge can yield up to 48% of P for recovery, but requires a significant amount of chemicals for control of pH (leaching and precipitation) and for minimizing heavy metal transfer into the product. The quality of products from sludge and liquor is good with low content on heavy metals, leading to a low potential toxicity for humans and ecosystems. Leaching of monoincineration ash with sulphuric acid yields 70% P with moderate chemical demand, but the leached ash and co-precipitated materials have to be disposed, and the product contains some heavy metals. Complete digestion of ash in phosphoric acid and multi-stage cleaning with ion exchangers yields high recovery of 97% P in a high-quality product (H3PO4) and several coproducts, having an overall low environmental impact. Thermo-chemical treatment of ash can recover up to 98% P with moderate energy input in case of integration into an existing monoincineration facility, but the product still contains high amounts of selected heavy metals (Cu, Zn). Metallurgic treatment of dried sludge or ash can also recover up to 81% of P, but the process has still to be tested in continuous pilot trials to validate product quality, energy demand, and energy recovery options. Sensitivity analysis shows that other pathways of sludge disposal (e.g. co-incineration combined with upstream P extraction, direct application in agriculture) may also be reasonable from an environmental point of view depending on local boundary conditions and political targets. In general, the use of life-cycle based tools is strongly recommended to evaluate and select suitable strategies for regional or national concepts of P recovery from sewage sludge.